Probability Spaces

Will Perkins

January 3, 2013

(ロ)、(型)、(E)、(E)、(E)、(D)へ(C)

A sigma-field (σ -field) \mathcal{F} is a collection (family) of subsets of a space Ω satisfying:

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

- $\textbf{0} \ \ \Omega \in \mathcal{F}$
- **2** If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- \bullet If $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

A sigma-field (σ -field) \mathcal{F} is a collection (family) of subsets of a space Ω satisfying:

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

 $\textbf{0} \ \ \Omega \in \mathcal{F}$

- **2** If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- \bullet If $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Examples:

A sigma-field (σ -field) \mathcal{F} is a collection (family) of subsets of a space Ω satisfying:

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

 $\bullet \ \Omega \in \mathcal{F}$

- **2** If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- \bullet If $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Examples:

• The set of all subsets of Ω is a σ -field

A sigma-field (σ -field) \mathcal{F} is a collection (family) of subsets of a space Ω satisfying:

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

 $\bullet \ \Omega \in \mathcal{F}$

2 If
$$A \in \mathcal{F}$$
, then $A^{c} \in \mathcal{F}$

3 If
$$A_1, A_2, \dots \in \mathcal{F}$$
, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Examples:

• The set of all subsets of Ω is a σ -field

•
$$\mathcal{F} = \{\Omega, \emptyset\}$$

A sigma-field (σ -field) \mathcal{F} is a collection (family) of subsets of a space Ω satisfying:

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

 $\bullet \ \Omega \in \mathcal{F}$

2 If
$$A \in \mathcal{F}$$
, then $A^{c} \in \mathcal{F}$

3 If
$$A_1, A_2, \dots \in \mathcal{F}$$
, then $igcup_{i=1}^\infty A_i \in \mathcal{F}$

Examples:

• The set of all subsets of Ω is a σ -field

•
$$\mathcal{F} = \{\Omega, \emptyset\}$$

•
$$\mathcal{F} = \{\Omega, \emptyset, A, A^c\}$$

Proposition

Let \mathcal{F} be any collection of subsets of Ω . Then there is a smallest sigma-field, $\sigma(\mathcal{F})$ that contains \mathcal{F} .

Proposition

Let \mathcal{F} be any collection of subsets of Ω . Then there is a smallest sigma-field, $\sigma(\mathcal{F})$ that contains \mathcal{F} .

Proof: ?

Proposition

Let \mathcal{F} be any collection of subsets of Ω . Then there is a smallest sigma-field, $\sigma(\mathcal{F})$ that contains \mathcal{F} .

Proof: ?

Definition

Let Ω be a metric space and \mathcal{F} the collection of all open subsets of Ω . Then the Borel σ -field is $\sigma(\mathcal{F})$

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Let \mathcal{F} be a σ -field on Ω . Then $P : \mathcal{F} \to [0, 1]$ is a probability measure if:

1 $P(\Omega) = 1$

2 For any $A_1, A_2, \dots \in \mathcal{F}$ such that $A_i \cap A_j = \emptyset$ for all $i \neq j$,

$$P\left(\bigcup_{i=1}^{\infty}A_i\right) = \sum_{i=1}^{\infty}P(A_i)$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

A probability space is a triple (Ω, \mathcal{F}, P) of a space, a σ -field, and a probability function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Coin Flip: $\Omega = \{H, T\}$, $\mathcal{F} = \{\Omega, \emptyset, \{H\}, \{T\}\}$, P(H) = 1/2, P(T) = 1/2.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

- Coin Flip: $\Omega = \{H, T\}, \mathcal{F} = \{\Omega, \emptyset, \{H\}, \{T\}\}, P(H) = 1/2, P(T) = 1/2.$
- **2** Two coin flips: $\Omega = \{HH, HT, TH, TT\}, \mathcal{F} = \{ \text{ all subsets } \}, P(HH) = 1/4, \dots$

(日)、(型)、(E)、(E)、(E)、(O)(()

- Coin Flip: $\Omega = \{H, T\}, \mathcal{F} = \{\Omega, \emptyset, \{H\}, \{T\}\}, P(H) = 1/2, P(T) = 1/2.$
- **2** Two coin flips: $\Omega = \{HH, HT, TH, TT\}$, $\mathcal{F} = \{$ all subsets $\}$, $P(HH) = 1/4, \ldots$
- Pick a uniform random number from [0, 1]: Ω = [0, 1]. F is the Lebesgue or Borel σ-field. P is Lebesgue measure (i.e., P([a, b]) = b a, the length of the interval).

Language: Probability vs. Set Theory

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 目 - のへで

Language: Probability vs. Set Theory

Ω is the sample space. Any ω ∈ Ω is an outcome. The set of outcomes must describe the experiment exhaustively and exclusively.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Ω is the sample space. Any ω ∈ Ω is an outcome. The set of outcomes must describe the experiment exhaustively and exclusively.
- 2 An *event* is a set of outcomes that is in the σ -field, $E \in \mathcal{F}$. Anything you want to ask the probability of must be an event in the σ -field.

- Ω is the sample space. Any ω ∈ Ω is an outcome. The set of outcomes must describe the experiment exhaustively and exclusively.
- 2 An *event* is a set of outcomes that is in the σ -field, $E \in \mathcal{F}$. Anything you want to ask the probability of must be an event in the σ -field.

③ Intersection: $A \cap B$ is the event that A and B happen.

- Ω is the sample space. Any ω ∈ Ω is an outcome. The set of outcomes must describe the experiment exhaustively and exclusively.
- **2** An *event* is a set of outcomes that is in the σ -field, $E \in \mathcal{F}$. Anything you want to ask the probability of must be an event in the σ -field.

- **③** Intersection: $A \cap B$ is the event that A and B happen.
- **4** Union: $A \cup B$ is the event that A or B happens.

- Ω is the sample space. Any ω ∈ Ω is an outcome. The set of outcomes must describe the experiment exhaustively and exclusively.
- **2** An *event* is a set of outcomes that is in the σ -field, $E \in \mathcal{F}$. Anything you want to ask the probability of must be an event in the σ -field.

- **③** Intersection: $A \cap B$ is the event that A and B happen.
- **4** Union: $A \cup B$ is the event that A or B happens.
- **6** Complement: A^c is the event that A does not happen.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

$$P(\Omega) = 1, P(\emptyset) = 0.$$

$$P(\Omega) = 1, P(\emptyset) = 0.$$

2 Monotonicity: If $A \subseteq B$, then $P(A) \leq P(B)$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

$$P(\Omega) = 1, P(\emptyset) = 0.$$

- **2** Monotonicity: If $A \subseteq B$, then $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (inclusion / exclusion)

(日)、(型)、(E)、(E)、(E)、(O)(()

$$P(\Omega) = 1, P(\emptyset) = 0.$$

- **2** Monotonicity: If $A \subseteq B$, then $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (inclusion / exclusion)
- 4 Let $A_1 \subseteq A_2 \subseteq \cdots$, and let $A = \bigcup_{i=1}^{\infty} A_i$. Then

$$P(A) = \lim_{n \to \infty} P(A_n)$$

$$P(\Omega) = 1, P(\emptyset) = 0.$$

- **2** Monotonicity: If $A \subseteq B$, then $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (inclusion / exclusion)

$$P(A) = \lim_{n \to \infty} P(A_n)$$

• Let
$$A_1 \supseteq A_2 \supseteq \cdots$$
, and let $A = \bigcap_{i=1}^{\infty} A_i$. Then
 $P(A) = \lim_{n \to \infty} P(A_n)$

$$P(\Omega) = 1, P(\emptyset) = 0.$$

- **2** Monotonicity: If $A \subseteq B$, then $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (inclusion / exclusion)

$$P(A) = \lim_{n \to \infty} P(A_n)$$

• Let
$$A_1 \supseteq A_2 \supseteq \cdots$$
, and let $A = \bigcap_{i=1}^{\infty} A_i$. Then

$$P(A) = \lim_{n \to \infty} P(A_n)$$

(For any $B \in \mathcal{F}$, $P(A) = P(A \cap B) + P(A \cap B^c)$